Classification of Multiple Cancer Types Using Fuzzy Support Vector Machines and Outlier Detection Methods
نویسندگان
چکیده
The support vector machine (SVM) is a new learning method and has shown comparable or better results than the neural networks on some applications. In this paper, we applied SVM to classify multiple cancer types by gene expression profiles and exploit some strategies of the SVM method, including fuzzy logic and statistical theories. Using the proposed strategies and outlier detection methods, the FSVM (fuzzy support vector machine) can achieve a comparable or better performance than other methods, and provide a more flexible architecture to discriminate against SRBCT and non-SRBCT samples. Biomed Eng Appl Basis Comm, 2005(December); 17: 300-308. Received: June 6, 2005; Accepted: Sep. 22, 2005 Correspondence: Cheng-Hong Yang, Professor Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan E-mail:[email protected] 301 BIOMEDICAL ENGINEERINGAPPLICATIONS, BASIS & COMMUNICATIONS 27 of cancer types primarily based on histological features has limitations due to their morphological similarity to other cancer types. Recently, diagnosis procedures typically involve a pathologist s interpretation with a combination of analyses, without a standardized systematic test. Accurate diagnosis would be essential for the efficacy of therapies. Under the premise of gene expression patterns as fingerprints at the molecular level, systematic methods to classify tumor types using gene expression data have been studied recently. Many scientists attempt to overcome the limitations of these conventional procedures, such as Dudoit et al. (2002), Furey et al. (2000), Golub et al. (1999), Khan et al. (2001), Mukherjee et al. (1999), Yeo and Poggio (2001), and references therein.
منابع مشابه
Robustified distance based fuzzy membership function for support vector machine classification
Fuzzification of support vector machine has been utilized to deal with outlier and noise problem. This importance is achieved, by the means of fuzzy membership function, which is generally built based on the distance of the points to the class centroid. The focus of this research is twofold. Firstly, by taking the advantage of robust statistics in the fuzzy SVM, more emphasis on reducing the im...
متن کاملOutlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator
The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006